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Steady flow in a cylinder of finite length rotating rapidly at  right angles to the earth’s 
gravity and containing a rigid cylindrical float is found under the assumption of small 
viscosity. The float is modelled by a ‘rigid free surface’. The major new result is a 
prediction of the rotation rate of the interface, which differs by a factor of O(E4) from 
those given by Greenspan (1976) and Wood (1977) for a rigid interface in an infinitely 
long cylinder. The difference is accounted for by the appearance of Stewartson layers 
on the inner boundary in the finite case. The result is supported by an experiment of 
my own, and is not in conflict with the experimental results given by Greenspan. 

Some additional experimental observations are reported : a comparison of free 
and rigid surface rotation rates; and a brief description of the spin-up from rest. 

1. Introduction 
The present paper is an extension of an earlier paper (Gans 1977, hereafter referred 

to as RFG). In  that paper I calculated the flow of an incompressible viscous fluid 
partially filling a rapidly rotating cylindrical container. The container was supposed 
to rotate about its principal symmetry axis, held horizontal. The flow was assumed 
to be nearly a solid rotation, differing because of gravity acting at the cylindrical 
free surface separating the liquid from the void. (The object of this calculation was 
to find the steady-state flow that may underlie a number of exciting time-dependent 
phenomena described in RFG and references cited therein.) 

The calculation used an amplitude expansion in powers of e = g/Q2a, where g, S I  
and a denote gravitational acceleration, container rotation rate and radius, respec- 
tively. At each power of e I used a boundary-layer analysis based on the smallness of 
E ,  = v/Qa2,  where v denotes the kinematic viscosity. 

The first-order (in e )  solution is essentialIy the same as that found by Phillips (1960), 
with the addition of boundary layers to satisfy viscous boundary conditions. The 
second-order analysis was directed at calculating the axisymmetric part of the flow, 
with a view to predicting the rotational speed of the interface: a dependent variable 
susceptible to measurement. 

Subsequently Whiting (1978) measured this interface rotation rate. His data dis- 
agree sharply with the theoretical prediction. The data give a difference between 
container and interface rotation rate roughly seven times larger than I predicted in 
RFG. 

Greenspan (1976) and Wood (1977) addressed (in different ways, with different 
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results, which I will discuss briefly below) a similar problem: flow in a rapidly rotating 
cylinder like mine, the void space of which is occupied by a buoyant rigid straw. This 
model is in essence a ‘rigid free surface ’. Both Greenspan and Wood calculated the 
rotation rate of the straw and found it to differ from the container rate by an amount 
not Ole2) as in RFG, but 0(e2E-t). This qualitative difference is a consequence 
of the change in boundary condition. On tt free surface the shear stresses must vanish; 
on a rigid free surface non-axisymmetric velocity components must vanish because 
the fluid cannot slip relative to  the surface. I n  addition the net torque on the straw 
must vanish. 

Whiting’s data (op. cit . )  lie between the two predictions; Greenspan’s data is ‘in 
fair agreement with theory’ (1976, p. 342). I will discuss a possible interpretation of 
this below. 

There is a flaw in both Greenspan and Wood: the calculations reported are strictly 
two-dimensional. I showed in RFG that the nature of the swirl away from the radial 
boundaries is controlled by Ekman suction on the end walls. I was able to construct 
an argument based on mass conservation which showed that the interior swirl, by 
which I mean the azimuthal component of the azimuthally averaged velocity field, 
has a component proportional to the inverse fifth power of the radial co-ordinate, 
and that there could be no component proportional to  the inverse first power: no 
potential vortex. 

A second consequence of the existence of end walls was the possibility of Stewartson 
layers; axisymmetric boundary layers with dimensionless thicknesses O(E4) and 
O(Ea) admitting axial flow and axial dependence. Whiting’s experiments clearly 
demonstrate axial flow a t  the inner interface. This axial flow varies in the axial 
direction. The swirl a t  the interface, on the other hand, is independent of axial direc- 
tion, in agreement with all three models. 

I remarked that the results of Greenspan (197G) and Wood (1977) are not identical. 
The difference is not discussed by Wood, who states that  ‘a  formula. . . essentially the 
same as [that of Greenspan] follows very simply [from the analysis] ’ (1977,  p. 1953). 
Discussion of the difference seems appropriate in this introduction, especially since 
Wood’s formulation is simpler than Greenspan’s and would provide a useful tool to 
aid in the understanding of the physics. 

Wood’s formulation balances the energy dissipation within a boundary layer 
surrounding the straw against the work done on the boundaries of that  boundary 
layer. Because the straw is torque free, work is contributed only by stresses a t  the 
edge of the inviscid region: a radius equal to the core radius plus the boundary-layer 
thickness. The relevant integrals can be most easily derived by taking the inner 
product of the momentum equation and the velocity and integrating over the boun- 
dary layer [cf. Landau & Lifschitz 1959, 9 161. Using the conditions of two-dimen- 
sionality and no flow across the boundary-layer edges leads to an integral expression: 

where u and v denote radial and azimuthal velocity components, r and $ radial and 
azimuthal co-ordinates, subscripts partial derivatives, V and S the volume and outer 
(fluid side) surface of the boundary layer. 
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I will define interior and boundary-layer components of the velocities, and dis- 
tinguish the former by a caret and the latter by a tilde: 

u = a+c; 2, = a+e. (1.2) 
The interior components do not change significantly across the boundary layer; the 
boundary-layer components become exponentially small outside the boundary layer, 
and have large radial derivatives within the boundary layer. 

I will also use an overbar to denote q4 averages, or axisymmetric components: 

Wood's interior azimuthal velocity can be written in the form 
a = ar+b/r+eV(r,@), 

where he uses an e to denote the small dimensionless displacement of the straw axis 
from the container axis. There is no a given; were there one, conservation of mass 
shows i t  must be O(E).  Thus the right-hand side of ( l . l ) ,  which can contain only in- 
terior (non-boundary-layer) components, becomes 

The left-hand side is dominated by the radial derivative of the boundary-layer azi- 
muthal velocity, so that, in Wood's formulation, equation (1 .1)  reduces to 

JvB:dv = -Js(a+..>;,dS. b h  

By assuming that a is nearly the container rotation rate, b/r2 < a and using 5,, taken 
from Wood (1957), Wood finds that b/r2 is O(c2E-*) and that 

where a = g/fi2ac and E, = v/Ra2c2 are the emall parameters used by Greenspan, c 
is the ratio of straw radius to container radius, and fi, is the rotation rate of the straw 
divided by that of the container. 

I call the term 012[4J(2)Ek]-l the retrograde rotation. It is what an observer sees 
viewing an experimental cylinder which is illuminated by a stroboscope flashing at 
the container rotation rate. It is dominated, in Wood (1977), by the interior potential 
vortex . 

Greenspan obtains the retrograde rotation by demanding that there be no net 
torque on the inner surface. (This condition is assumed by Wood, but not demon- 
strated.) The net torque in the axial direction can be written 

where 8' is the surface of the straw. On the surface of the straw u = 0, there is no 
contribution from the solid rotation, and to leading order 

where ri  is the radius of the straw. This value is twice that given by Wood. 
18-2 
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I prefer to accept the Greenspan (1976) result, primarily because that analysis is 
more detailed. This paper is not the place for a detailed analysis of the differences, 
so I will restrict myself to two comments. 

1 .  There appear to be no simple errors in algebra or typography. Either result can 
be reproduced using the two-dimensional analogues of the velocity fields I compute 
below, under the appropriate hypothesis. 

2. Woods’ result may be non-uniform. The right-hand side of 1.5 is formally O(1). 
It is constructed by neglecting terms which are O(s)  and terms which are 0(6),  where 
S is used here (only) to denote a boundary-layer thickness. Since the result is O(s2E-b), 
there is a possibility that some terms have been neglected that ought not to have 
been neglected. A similar difficulty does not arise in Greenspan’s analysis. 

Both results depend on a strictly two-dimensional flow which cannot be realized 
in a finite container. In a ‘long’ container, the Stewartson layers expand to fill the 
container. In a ‘short’ container the Stewartson layers are truly thin boundary layers. 
Both Greenspan and Whiting reported experiments in short containers, with aspect 
ratios h = 1.25 and 1.15 respectively. 

In this paper, I present a calculation leading to the prediction of the rotation rate 
of the straw and experimental results for a particular straw. I find its departure from 
co-rotation to be O(s2E-a). The difference arises from the three-dimensionality of the 
calculated flow. This three-dimensionality is forced by the assumption of a cylinder 
of finite length. 

The analysis parallels that in RFG. In $5  2 and 3, I have constructed a formulation 
and presented some calculations in an effort to make this paper reasonably self- 
contained. 

Section 4 compares both theoretical predictions to the experimental data in HPG, 
and to experimental data from my laboratory. The latter experiment is described. 
Some experimental observations of phenomena outside the reach of the present 
theory, such as the non-ideal free surface data and spin-up from rest, are described 
as well in 3 4. 

2. Formulation 
All analyses agree that the lowest-order effect of gravity is to cause the core to be 

displaced from the centre, primarily in a downward direction, a distance proportional 
to e ,  Whiting’s (1978) measurement agrees with the prediction, which is independent 
of the nature of the interface. Thus, a system of co-ordinates centred in the container 
leads to serious difficulties in an analysis of boundary layers ‘on’ the interface. 

Greenspan ( 1  976) circumvented this difficulty in an elegant fashion by introducing 
a stream function and a complex transformation mapping the non-concentric circles 
into concentric circles: an adaption of a method used by Wood (1957). RFG resolved 
the difficulty by using two sets of co-ordinates and matching velocities at  intermediate 
radii, near neither the outer wall of the container nor the interfacial region. I will 
use the latter approach here, as it facilitates consideration of axial variations. 

Details of the co-ordinate transformation are given in RFG. In essence one sup- 
poses that there are two co-ordinate systems x and %, called the core and container 
co-ordinates, respectively, separated by an (unknown) small distance 6eu. One finds 
6 such that the location of the interface in dimensionless cylindrical core co-ordinates, 
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FIGURE 1. Sketch of the two co-ordinate systems. 

r = aC(#,  z ) ,  has no component singly periodic in #. (Such a component corresponds 
to a translation of the core.) Then 

is the location of the boundary in core co-ordinates, and, to the order to be assessed 
here, one can substitute r = ac into the expressions for the dependent variables on 
the interface and not need to include radial derivatives of the dependent variables. 

In the sequel the following non-dimensionalization is used. I set r = ar' and 
v = Qav', and substihte these into the differential equations and boundary condi- 
tions. Four non-dimensional numbers appear: e and E ,  defined in 9 1 ,  c, the dimension- 
less radius of the straw defined by (2.1), and A, the length to diameter ratio of the 
container. After non-dimensionalization the primes are dropped as superfluous. 

Because the interface is supposedly rigid, C will be constant (equal to c). The same 
transformation is made as in RFG, but the condition determining 6 (and the angle a 
between the gravity and core displacement vectors) is that the net force on the core 
(or straw) is zero. 

r = [c + e2x] a (2.1) 

Formally, the Cartesian transformation, in cylindrical co-ordinates, is 

FCOS$ = rcosq5, 'i;sin$ = rsinq5-Se. (2.2) 
The two systems share a common axial ( 2 )  co-ordinate. 

Thus the vector parallel to gravity is written 
The line joining the two systems is not necessarily vertical (parallel to gravity). 

y = Sinai-cosaj, (2.3) 
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where i and j are Cartesian unit vectors in either co-ordinate system, and u is an 
(unknown) angle. These are all shown in figure 1.  

The radial and azimuthal velocity components are written u(r ,  4, z ) ,  v(r ,  9, z )  and 
G(F, $, Z ) ,  V(F ,  $,Z). The matching condition, derived in RFG, is 

1 ( 2 . 4 ~ )  

1 
P 

u(p,O,C)-U(p,6,5) = -&8e (u+U)--cosO(v+;ij) +0(8), 

I (2.4b) 
V(P, 8,C) - V(p, 8, <) = - 4 8 ~  cos O(u + U) + 0(€3). 

This condition has been developed by: ( 1 )  expanding u and v in a Taylor expansion 
about (T ,  q5, z )  = (p ,  B,c )  and U and V about (r,  q, 2 )  = (p ,  8,<); (2) equating the two 
representations at a single physical point midway between the two points 

and (TI q5, 4 = (P, O,C) (7, 5, 2) = (P, 8,C). 
I have introduced the extra notation with the aim of making this clear. 

Because attention is directed at the inner interface, most of calculations will be 
carried out in core co-ordinates. Some results will be given in both systems, to make 
it easy to compare with Phillips, who worked in container co-ordinates. 

It is convenient to separate out a component of a solid rotation by writing the 
velocity as 

(2.5) 

and the pressure as P = P o + 3 r 2 + c y . r + e p  (2.6) 

v = re, +eu, 

with similar expressions in the barred co-ordinates. Here Po is a constant and C, is a 
unit vector in the q5 direction. The substitution of (2.5) and (2.6) into the general 
equations of motion yields equations for u and p ,  which, assuming steady motions 
in the laboratory frame, are 

u~ ,+2~zxu++u.vu+vp  = EVau, 
v . u  = 0. (2.7) 

(As usual u , ~  means the partial derivative with respect to q5 of the components of u 
only.) 

The boundary conditions for the set (2.7) are the usual no-slip conditions on the 
solid boundaries. On the rigid free surface one also has no-slip conditions, but, as 
the straw is free to rotate and translate, there are additional conditions: the net 
force and torque on the straw must vanish [cf. Greenspan 19761. These conditions 
determine the location and rotation rate of the straw, respectively. 

As the straw can move only in the x and y directions, the fluid-generated force on 
the straw can have only x and y components. Similarly, the fluid-generated torque 
has only a z component. The forces and torque may be written in terms of the stresses: 

IS, = - P , - ~ r 2 - - . r - e ~ + 2 E & u , ;  ur+ = eE 

The force conditions are: 

dq5(cos q5uw - sin q5u,.,} = 0;  dq5 {cos q5vr, + sin q5cw} = 0;  (2.8) 
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and the torque condition is 

In equilibrium the surface of the straw can have only constant azimuthal velocity SO 

that the no-slip condition may be written 

u = 0 = w, 2) = c[Qs- 11, (2.10) 

where Q, is the dimensionless rotation rate of the straw, to be determined (from the 
torque balance) during the course of the analysis. 

One notes that ~ y . r  is the only inhomogeneous term in the problem. This was 
anticipated in the substitutions (2.5) and (2.6), and I use this to motivate the con- 
struction of an expansion of the form 

u = u(0) + €U(') + . . . , p = $0) + €$)(I) + . . . . (2.11) 

Within this expansion it is necessary to divide the solutionsintointerior and boundary- 
layer parts as 

using the caret for interior flow and the tilde for boundary-layer flows. 

ucn) = + G(TI.), $)(TI.) = @(n) + p ,  (2.12) 

y . r = r[sin a COB q5 - cos a sin $1, 
the n = 0 solutions will be singly-periodic in +, and, by nonlinear interaction, these 
will force doubly-periodic and axisymmetric n = 1 solutions. Only the latter will be 
of interest here, as the primary goal is to calculate the rotation rate of the straw. 

The result of putting (2.11) and (2.12) into the no-slip conditions on the solid 
boundaries is that 

(2.13) 

the former analogous to an Ekman matching condition, and the latter the no-slip 
condition determining the boundary-layer solutions; n is a vector normal to the 
surface. 

[In general n . W  will be of the order of the boundary-layer thickness smaller than 
n . and inclusion of this term in the normal boundary condition carries with it 
an implication regarding ordering. The next contribution to such a match (the first 
omitted term) will be that contributed by n . P f Z ) ,  as the n + 1 term will have different 
symmetry in its azimuthal dependence. Thus the condition as written in the first of 
(2.13) implies that E is small compared to the square root of the boundary-layer thick- 
ness. As the thinnest boundary layer is of thickness Ed, € < Eb.] 

Making use of the periodicity information to simplify the expressions (Qs must be 
constant) gives, for the no-slip conditions on the straw: 

As 

n . (Q(n)+ fi(n)) = 0,  n x (fit%)+ G(%)) = 0; 

I + = 0 = [@To + fp'], 
[GO) + G@)] = 0, [@I)+ @] = (Qs - 1) c,  

- -  

where the reader will recall that the overbar denotes a g3 average, e.g. 

(2.14) 
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Substitution of (2.5), (2.6) and the stress expressions into the force equations gives 

(2.15) 
which can be simplified using the expressions (2.11) and (2.12) and symmetry con- 
siderations. First, the integral over the constant terms, Po + +c2, will vanish, SO that 
all the leading terms in the integrals will be O(e) ,  involving do), p(O) and y . r. There 
will be no contribution from u(1), p(l)  because these functions are either axisymmetric 
or doubly-periodic in azimuth and will not contribute to the integrals. Thus one can 
replace u, v and p by d o ) ,  do) and p(0) with an error e2 smaller than the terms retained. 

The no-slip condition can be used to further reduce the problem, by noting that 
do) and vanish on the straw, leading to reduced force conditions 

(2.16) 

Away from the end walls (where straw-wall-fluid interaction is unlikely to be amenable 
to analysis in any case) do) is strictly two-dimensional, so that do) = 0 = do) implies 
u$O) = 0. Only via) does not vanish, and it will be dominated by which will be E-4 
larger than The force equations are then 

(2.17) 

where terms of O(1) and O(E4) are retained, consistent with the earlier ordering of 
the matching conditions. 

A similar series of arguments regarding symmetry lead to a reduced torque con- 
dition (formally identical to the second-order shear condition in RFG): 

1- - 
vp' - -2)(1) = 0. 

C 

As v- involves !2,, equation (2.18) will become an equation for SZ,. 

(2.18) 

3. Calculations 
The retrograde rotation has three components: ( 1 )  an interior flow arising from 

a balance of Ekman suctions on z = k A ;  (2) a forced boundary layer of thickness Ei 
arising from the particular solution to the boundary-layer equations; and (3) a set 
of Stewartson layers of thickness Ef and E*. The first of these components is un- 
changed from RFG. The second was negligible in the context of RFG; it cannot be 
neglected here. The third is modified by the prominence of the second. 
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Some discussion of the equation in question will make these statements clearer. 
If one examines the Navier-Stokes equations under the hypothesis that radial deri- 
vatives are large compared to axial and azimuthal derivatives, and further takes a # 
average, one finds that the azimuthal component of these equations becomes, on 
retaining dominant terms and subtracting the non-boundary-layer part: 

(3.1) 
1 1 
r r 

E$$f) = - u(o)(r@J)), + - @N(r@0))7. 

Within the boundary layer d o )  [ = W )  + .ii'O)] will be E* smaller than 4Yo), and i$') will 
be E-* larger than 8 O ) .  The first term on the right-hand side of (3.1) will be of the 
order of [i3°)]2. The second term will be of the order of E*.i@Wo). All of these terms vary 
radially in a scale of E*, so that the particular solution to (3.1) will be of the same 
magnitude as the right-hand side. 

If the surface is free, then G$O) will be of the same order as 0$O) [which is O(l)], and 
iYo) = O(E*). Thus the right-hand side of (3,1), and hence its particular solution, will 
be O(E)  and negligible. However, if the surface is rigid, then $0) will be of the same 
order as 

In  either case the boundary condition on o(1) involves shear. As will be seen below, 
the shear balance takes place in an Ek layer, and is among an interior [0( I)] solution, 
the particular solution and the E i  layers. Denoting these magnitudes by A,, A,  and 
At one has, symbolically, 

O(l ) ,  and the right-hand side of (3.1) will be O(1).  

If A ,  5 E* (as in the free surface case) At N E* and Qs N A,/c. If A ,  = O ( l ) ,  as in 
the rigid surface case, then A& N E-& and Qs - Aa/c N E-alc. 

The remainder of this section presents such calculations as are necessary to make 
these arguments quantitative. 

3. I. The linear solution 
To begin one needs to form the nonlinear term, for which one needs the linear solution, 
do). The differential equations governing do), p(0) are obtained from (2.7) by replacing 
U, p by d o ) ,  p(0) and letting E + 0. General solutions away from the end walls (end-wall 
boundary layers can be added; they are identical to those described in RFG) are: 

= - A , + -  cos$+ A,+" sin#, [ 21 [ &] 

 YO) = [A,r + ?] sin 4 + p e r  + $1 cos 4; 

8 0 )  = exp R[A cos ( R  + $1 + B sin (R + $)I, 

jY0) = - (2E)~expR[(A-@cos(R+$)+(~+8)sin(R+$)] .  (3.2) 
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Here A,, B,, A,, B,, d and B are constants, the leading order of which will not exceed 
unity, and R = ( C  - r)/(ZE)*. (3.3) 

Similar expressions apply in container co-ordinates with R replaced by (F - 1) (2E)-),  
c replaced by unity in the expression for u and the appropriate sign corrections made. 
These are given in RFG. If we use the symbols t o  stand for the constants in the in- 
terior solutions, with an overbar to  denote container representations, the matching 
conditions are A, = As+S,  Ac = A,., B, = B,, B, = B,, (3.4) 
which eliminate the barred constants (cf. RFG). - 

The no-slip condition on F = 1 eliminates d and B in terms of the barred interior 
constants, hence the unbarred interior constants : 

- - 
d = -A,+&B,, B = -A,+QB,-S. (3.5) 

The normal condition (u = 0) on F = 1 allows one to eliminate A,  and A,: 

where e = (iE)* and the expression (3.6) is a formal one, only valid to O ( e ) .  
The no-slip condition on the inner ( r  = c) boundary serves to  eliminate A and B: 

(3.7) 

( 1  - 2e) c2+ (1 - e ) 2 +  e2 2e 
i B s + ( i - e ) 2 + e 2  

(1 - 2e)  c2+ (1 - e ) 2 +  e2 - B = -  2e 
(1  - e ) 2 + e 2  QBs+ [(i - e )2+ez ]c2  

where these are again formal expressions in the sense of (3.6). 
The normal velocity condition serves to eliminate the B’s in favour of 6: 

A,+$ B e  = ,(A+@, A,+- B,. = ? ( A - B ) ,  
3c2 c (3.8) 

which, together with (3.6), imply that 

6cSe 3c2S 2e 
(1  - c 2 ) 2  ( 1  - c3) + O(e2),  (3.9) 

and the formal expressions are sufficiently unwieldy that I have kept only the signi- 
ficant (uniform) parts. {In fact, only the leading [0( I)]  term of B, enters the calculation 

Finally one determines S and 01 by using the force conditions. The second of (2.17) 
of Q5.) 

determines 
(3.10) 

which agrees with Phillips’ (1960) inviscid result when e 4 0. The viscous correction 
is new, and differs (quantitatively, only) from that reported for a free surface by 
Ruschak & Scriven (1976) and by RFG. The first of (2.17) gives 

a - 2e( 1 - c3),/c( 1 - c 2 ) ,  ( 3 . 1 1 )  
a new result. 
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3 .2 ,  The  axisymmetric nonlinear solution 
The axisymmetric problem may be written in core co-ordinates as in RFG. It is 
shown there that the interior can support neither radial nor axial velocities, and that 
the azimuthal velocity, determined by Ekman matching conditions on the end walls, 

3(1) = -N&/r5 (3 .12)  is 

where N = [27($)3 - 20] /20  = 0-102270384.. . . This conclusion depends on the leading 
terms of A ,  and B, and is thus unchanged here. 

The boundary-layer equations on r = c are 

1 1 
r r  r 

- 
2@) - E$l) - - ~ ( 0 ) -  (rC(0)) - rfJ0)- (r&(0))r, $(I) - E$(l) = 0 + $$ = 0. 27. 

(3 .13)  

These equations are to be solved subject to the no-slip boundary conditions derivable 
from (2 .14 ) ,  which will leave R, undetermined. The latter is then found from the torque 
balance. 

The right-hand side of (3 .13)  is a function of r only. The radial component can be 
absorbed into the pressure and need not be considered further now. In RFG the azi- 
muthal component was O(e)  and did not intrude into the main problem. This is not 
true here, and a particular solution, Z p ,  satisfying 

r r -  

E$p,rr = [@J) + GicO)] $0) (3 .14)  

is required. (Only the dominant terms on the right-hand side are required.) 

parts of A,, B,, A ,  and B,, and noting that 
write the right-hand side, omitting terms of Ofe), as 

Putting T = c - 2 e R  into ( 3 . 2 ) ,  and using (3 .8) - (3 .10)  to calculate the dominant 
= 1 + O ( e ) ,  B = O(e) ,  allows one to 

(3.15) (2c)-l {exp R[( 1 + R) cos R - R sin R] - exp 2R}. 

v"p,r = - (2ec) - l {R cos Rexp R -  + exp 2R}, 
A first integral gives 

which takes the value - (4ec)-1 on the boundary. The second integral gives 

(3 .16)  

v" P = - c - l { [R  (sin R + cos R )  - sin R ]  exp R - 1 exp 2R} ,  (3.17) 

which takes the value (4c)-l on the boundary. 
The homogeneous solutions to (3 .13)  are the usual Stewartson layers as given, for 

this problem, in RFG. The associated azimuthal velocity can be separated into two 
parts, a z-dependent part in the E* layer and a z-independent part in the Ei  layer. 
As the particular and interior solutions are both z-independent, only the component 
in the E i  layer is of direct interest. 

This term can be written 
v"!) = W, exp yo(c - r ) ,  (3 .18)  

where yo = (h2E)-i. The leading terms in the (2-independent) stress condition, which 
condition comes from (2.1 8 ) ,  are 

-yowo- (4ec)-1 = 0, (3.19) 
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from which Wo = - (4ecy0)- 1 - - O(E-4) (3.20) 

which will dominate the observed retrograde rotation. [If (h2E)i is not small compared 
to C ,  as will be the case for the only experiments in the literature, (3.19) must be modi- 
fied. This is discussed in $ 4  below.] 

4. Some experimental observations 
The simplest experimental check one is tempted to make is to measure the retro- 

grade rotation. Greenspan measured the straw rotation rate, from which one can 
infer the retrograde rotation rate. As I will show, Greenspan’s data are inadequate 
to distinguish between the theoretical result and that given here, so I have also done 
an experiment which I report below. 

In  both Greenspan (1976) and the experiments reported here, the ratio of c to El 
is not so far from unity that E* can be neglected in comparison with c. Thus, before I 
can use my theory to predict experimental results, a small correction must be made. 

The shear stress balance in (3.19) is an asymptotic balance in which 

1 f (+$+Vr--v) T w *f i r ,  

and the right-hand side is replaced by its dominant term, that in the E* layer. When 
c = O(E*), the term v/c is equally important, and one should replace (3.19) by 

which gives 

- yo+; Wo- (4ec)-l = 0, ( 
W, = - [( 1 + yoc) (4e)]-l. 

(3.19)’ 

(4.1) 

No other change arises, as the stress associated with the inviscid interior flow is still 
small compared to that arising from the particular solution; W, dominates the retro- 
grade flow. 

Predictions of retrograde rotation are: 
From Greenspan (1976) 

$E,* 1- - f i s= -  
2 4 2  * 

From this paper: 
€ 2  a2Eai (h2E)i 
4ec 2 4 2  c +  (h2E)*’ 

l - f i s = - [ l + c y o ] - ~ = -  

(Recall that 01 = B / C  and E ,  = E / c ~  are the basic small parameters used by Greenspan.) 
There is a difference between (4.2) and (4.3) of a factor of 

formally the present result is E i  smaller. 
The difference is explicable in terms of the basic analyses in both papers, and the 

present result can be obtained using the reasoning in Greenspan (1976). That reasoning 
is that: ( 1 )  the velocity of the fluid at  the straw must equal the velocity of the straw; 
(2) the net torque on the straw must vanish in the steady state; (3) the dominant 
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contribution to the torque on the straw is that from the particular solution. From 
these Greenspan obtains an integral condition which, in the notation used here, 
reduces to Q, = 1 -@/4ec, 
which in Greenspan's notation is 

Q, = 1 -a2E,4/2.J2, (4.5) 
his result. 

(2-independent) velocity is given by 
One modifies the thought process by adding the E i  layer. Then the continuity of 

and the toraue condition gives 

which is the result obtained in this paper (without the small c correction). 
Before presenting my experiments, a brief assessment of Greenspan's experiment 

is appropriate. He gives the rotation rate of the straw as a function of the rotation 
rate of the container at six different values of c. No formal error estimates are given. 
I have taken the data from figure 4 in Greenspan (1976) graphically. The errors intro- 
duced by this process are less than 1 %, and probably small compared to distortions 
in reproduction which are, in turn, likely to be at  most of the order of the true errors. 

(4.10) K = ( 1  - a,) ri Q-4/(Ap)2 Figure 2 shows 

as a function of ri, where ri is the dimensional inner radius, equal to ac. Here 

AP = (Pf -Ps)/Pr,  
where pf, p, denote the density of water and the mass of the straw divided by its 
volume, using the values given by Greenspan (1976). 

For ri in em and Q in 1000's of rev/min, Greenspan predicts that K = 0.289, 
independent of ri and Q. This paper predicts that 

Qi(PE) -& K = 0*0116- 
1 + c(h2E)-i' 

with Q measured in 1000's of rev/min. The solid line in figure 8 is Greenspan's (1976) 
result and the dashed line that of the present work, with Q = 1500 rev/min. (The 
experiments vary from about 1000-2400 rev/min; as the expression depends only 
on the fourth root it seems silly to worry about a band of results.) 

The data points were obtained by calculating K at each ri using the mean of the 
observed values of 1 - Q,. The error bars depicted represent f twice the sample 
standard deviation, calculated according to the small sample rule: 

1 "  
n-  1 im1 

8 2  = - (K i -R)?  
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FIGURE 2. K [defined by (4.4)] 27s. inner radius for the experiments in Greenspan (1976) (solid 
line): 0 ,  c = 5.26 x x ,  c = 4 . 3 4 ~  A, c = 3 . 8 2 ~  0, c = 2.63 x 0, 
c = 2.37 x +, c = 1-71 x ---, present paper. 

Because of the experimental errors, and the asymptotic nature of the theories, one 
cannot make a stronger statement than: these data suggest that the present theory 
is to be preferred over that of Greenspan. [The results in Wood (1977) would give 
K = 0.145, a result consistent with the data.] 

The major problem in using Greenspan to distinguish among the theoretical pre- 
dictions is that the ratio given by (4.4) is not sufficiently different from unity. It is 
hard to make E much smaller than 10-6, a typical value in Greenspan’s experiments, 
so one is left with the option of making c larger. Greenspan’s c’s range from 1.71 x 
to 5.26 x 10-2. TO obtain a dramatic contrast I built a float with c = 0.24. 

My experiments were performed in an acrylic cylinder with the inside dimensions 
of length = 184 mm and diameter = 158-8 mm, capable of rotation rates up to 
1375 rev/min. My float was constructed of PVC drain pipe, capped with plastic ends. 
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It was a not quite circular cylinder having a major axis of 38-61 mm and a minor 
axis of 37-72 mm, determined by direct measurement using a vernier calliper. The 
overall length was 176 mm. I ts  mass was 47.5 g, giving an effective density of 0.236 g/ 
ml and a A p  = 0.764. I used a volume ratio to  calculate c = 0.240. The remaining 
parameter, h = 1.16. ( A  = 1.25 for Greenspan’s experiment.) 

A major problem in modelling a rigid free surface by a float is the interaction be- 
tween the end walls of the float and the container. For thin straws (c < 1) this is 
probably not important. For the larger float I built it raises concern. I chose the 
length of the float to be small enough to allow several boundary-layer thicknesses 
between it  and the container a t  each end. I do not know how effective this is. Intui- 
tively, I expect the effect to  be to decrease the retrograde rotation rate, that is, to 
make the float rotate more closely to the container rotation rate. 

I measured the differential rotation period of the float as a function of the rotation 
rate of the container. I used a strobotach to  ‘freeze’ the container in the laboratory 
frame. This provided a value for the rotation rate. I then observed the apparent 
rotation rate of the float by timing several rotations with a stop watch. For the more 
rapidly rotating cases I would time ten rotations; in slower cases I would take enough 
rotations t o  obtain total elapsed times in the range of 25-40 s. I n  no case were fewer 
than three rotations used. At each container rotation rate I repeated this timing 
exercise ten times. 

The major source of experimental error is determining an integral number of 
rotations. I observed the passage of a mark on the float past a mark on the cylinder, 
and I may have made errors as large as one-fourth of a rotation period, leading to a 
maximum estimated error of one-fourth of a period divided by the number of periods 
timed. Thus, the fewer the periods timed, the larger the expected error. 

I formalized the error by making ten measurements a t  each rotation, calculated 
the mean and standard deviation (using the small sample formula) and divided by 
the number of periods in a measurement. I used twice this sample standard deviation 
as a formal error. It is, of course, a measure of precision. 

Figure 3 is a logarithmic plot of the differential rotation period as a function of 
container rotation rate. The two solid lines are theoretical: the upper left is that  
calculated from this paper and the lower right that  calculated from Greenspan (1976). 
The error bars are the formal error described above; where none are shown, they would 
fall within the circles. 

These data were taken on four different days. Some of the scatter is likely to be 
related to  differing amounts of unwanted air in the container, and its distribution. 
There was usually a small air column visible between the float and the container a t  
one or both ends, the diameter of which was roughly half that  of the float. I n  addition 
there were always some air bubbles on the float’s surface. Some of this air was sucked 
in from a faulty axial valve and the rest came out of solution from the water. A typical 
total air volume was 5-10 ml. 

The reader is reminded that the small parameter arising from linearization de- 
creases to  the right. One expects better agreement in the upper right than the lower 
left. I n  addition the theoretical results are asymptotic in small fractional powers of 
the Ekman number. For the upper half of the data swarm, roughly those points above 
a container rotation rate of 900 rev/min, the present theory underestimates the 
differential rotation period (and hence overestimates the differential rotation) by 
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FIGURE 3. Retrograde rotation period 21s. container rotation rate: c = 0.240, A p  = 0.764, 
h = 1,16. Upper solid curve is based on (4.3), lower on (4.2).  

about 40 per cent. The theory in Greenspan (1976) is considerably worse. In  view of 
the difficulties involving the end wall interactions and air infiltration, the fact that 
the discrepancy is less than ten times Ef is heartening. I think it fair to conclude that 
the theory in Greenspan is probably inapplicable to containers with A = O(l) ,  and 
that the theory presented here is in its essentials correct. 

The flow is clearly more complex below 900 revlmin. Clearly more than one flow 
state is possible a t  a given container rotation rate. The data suggest to me a bifur- 
cation a t  about 900 rev/min, and a second bifurcation on the lower branch at  about 
800rev/min. I think the point at  the far left belongs on the upper branch, and I 
spent some time trying to fill in the space between that point and the rest of the upper 
branch without success. 

Both lower branches end a t  a period of about 0.9 s. Below this vortex shedding of 
the type described by Greenspan is observed, and the interface rotation becomes time- 
dependent, reading a (retrograde) maximum just before vortex shedding. I have made 
some very crude preliminary observations not suitable for reporting a t  this time. 
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FIGURE 4. Retrograde rotation rate z w .  a. Points above small-dashed line (and the rircled point) 
are for a rigid interface with c = 0.24; points below the small-dashed line are for an air-water 
interface for seven values of c between 0.10 and 0.20. The long-dashed line is taken from Whiting 
( 1978) and represents an experimentally derived rotation rate for air-water and air-glycerol 
interfawa. The upper solid line is based on (4.3) in this paper. The lower solid line is based on 
the free surface theory given by Gans (1977). 
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FIGURE 4. Retrograde rotation rate z w .  a. Points above small-dashed line (and the rircled point) 
are for a rigid interface with c = 0.24; points below the small-dashed line are for an air-water 
interface for seven values of c between 0.10 and 0.20. The long-dashed line is taken from Whiting 
( 1978) and represents an experimentally derived rotation rate for air-water and air-glycerol 
interfawa. The upper solid line is based on (4.3) in this paper. The lower solid line is based on 
the free surface theory given by Gans (1977). 

I remarked in the introduction that Whiting’s data for air-water and air-glycerol/ 
water interfaces disagreed sharply with my theoretical predictions for an ideal free 
surface. It is of some interest to compare these data with the rigid interface data. 
This is done in figure 4, showing 1 - as as a function of a ( =  E / c ) .  The points above 
the small dashed lines (and the circled point) are the data from figure 3. The other 
points are data I took using various air cores in water, and timing the rotation periods 
of small bubbles on the interface. I used the same technique as I described above 
except that I froze the bubbles in the laboratory frame and timed the apparent 
container period. This was done because: (1) it is hard to tell one bubble from another 
as it goes around; (2) there was observable differential motion on the surface. 

I have not drawn the formal errors on this figure because it is complex enough as 
it is. They are comparable to those in figure 3, and in no case come near violating the 
small-dashed line. 

The long-dashed line is taken from Whiting. I have taken his empirical expression, 
which involves the sizes of the particles he used as markers and the viscosity, and let 
the marker particle size and viscosity go to zero. The resulting curve is the straight 
line I have drawn. My data are consistent with his. 



646 R. F. Guns 

I 
g 

FIQWRE 5. Intermediate spin-up stage. This drawing is Schematic. 

The upper solid line is derived from the theory given above. The lower solid line is 
derived from my ideal free surface theory. A possible interpretation of figure 4 is 
that the air-water interface has some effective rigidity; it can support some shear 
stress. Work addressing this point is in progress. 

A final observation concerns spin-up from rest. At rest the float is at the top of the 
cylinder. When spun-up, the float is near the centre, moving as described above. 
The process by which the float-fluid system spins up is interesting to watch. 

Initially the float begins to rotate and moves away from the wall in a prograde 
spiral until it  reaches the position shown in figure 5 .  In that position it does not rotate. 
Its major axis is horizontal. It pitches and bobs vertically. The volume within the 
dashed circle is relatively quiescent. Small air bubbles stirred up by the initial phases 
of spin-up appear uniformly distributed within the region. 

From time to time the float will rotate abruptly one half, or several half times. 
These episodes occur more frequently and last longer. The impression is of the outer 
fluid dragging more and more frequently on the float. Finally it rotates continuously, 
fairly slowly, and moves to its final position, where it spins rapidly up to its final 
rotation rate. It is during the latter rapid spin-up that markings on the float blur out 
of sight. 

It spins down to rest by sliding sideways to the intermediate position, and then 
arcing directly to the top. 

If the container is spun up impulsively and slowed (not stopped) before the float 
can spin up, the float moves to the centre and appears to spin up. 
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FIGURE 6. Inverse spin-up time v8. container rotation. The error bar on the point 
straddling zero indicates failure to spin up in 11 min, 0.09 on the ordinate. 

I made some casual measurements of a spin-up time, which I defined as the time 
between the start of the cylinder and the final rapid spin-up of the float. This is not a 
well-defined interval and I was surprised how regular and simple a relationship is 
indicated. In  figure 6, I show the spin-up frequency in rev/min [60/(spin-up time in 
seconds)] wersus the rotation rate. 

I offer no explanation for any of the spin-up data, but put it forward for whatever 
interest it may have. 

I am grateful to the editor and a referee for pushing me into my laboratory. Without 
their encouragement the data I report here would not exist. Support from the Atmo- 
spheric Research Section of the National Science Foundation is gratefully acknow- 
ledged. 
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